强化学习(RL)通过原始像素成像和连续的控制任务在视频游戏中表现出了令人印象深刻的表现。但是,RL的性能较差,例如原始像素图像,例如原始像素图像。人们普遍认为,基于物理状态的RL策略(例如激光传感器测量值)比像素学习相比会产生更有效的样品结果。这项工作提出了一种新方法,该方法从深度地图估算中提取信息,以教授RL代理以执行无人机导航(UAV)的无地图导航。我们提出了深度模仿的对比度无监督的优先表示(DEPTH-CUPRL),该表示具有优先重播记忆的估算图像的深度。我们使用RL和对比度学习的组合,根据图像的RL问题引发。从无人驾驶汽车(UAV)对结果的分析中,可以得出结论,我们的深度cuprl方法在无MAP导航能力中对决策和优于最先进的像素的方法有效。
translated by 谷歌翻译
在水下活动期间获得的图像遭受了水的环境特性,例如浊度和衰减。这些现象会导致颜色失真,模糊和对比度减少。另外,不规则的环境光分布会导致色道不平衡和具有高强度像素的区域。最近的作品与水下图像增强有关,并基于深度学习方法,解决了缺乏生成合成基地真相的配对数据集。在本文中,我们提出了一种基于深度学习的水下图像增强的自我监督学习方法,不需要配对的数据集。提出的方法估计了水下图像中存在的降解。此外,自动编码器重建此图像,并使用估计的降解信息降解其输出图像。因此,该策略在训练阶段的损失函数中用降级版本代替了输出图像。此过程\ textIt {Misleads}学会补偿其他降解的神经网络。结果,重建的图像是输入图像的增强版本。此外,该算法还提出了一个注意模块,以减少通过颜色通道不平衡和异常区域在增强图像中产生的高强度区域。此外,提出的方法不需要基本真实。此外,仅使用真实的水下图像来训练神经网络,结果表明该方法在颜色保存,颜色铸造降低和对比度改进方面的有效性。
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
本文介绍了一种新型深度加强基于基于深度加强学习的3D Fapless导航系统(无人机)。我们提出了一个简单的学习系统,而不是使用一种简单的学习系统,该系统仅使用来自距离传感器的一些稀疏范围数据来训练学习代理。我们基于我们对两种最先进的双重评论家深度RL模型的方法:双延迟深度确定性政策梯度(TD3)和软演员 - 评论家(SAC)。我们表明,我们的两种方法可以基于深度确定性政策梯度(DDPG)技术和Bug2算法来胜过一种方法。此外,我们基于经常性神经网络(RNNS)的新的深度RL结构优于用于执行移动机器人的FAPLESS导航的当前结构。总体而言,我们得出结论,基于双重评论评价的深度RL方法与经常性神经网络(RNNS)更适合进行熔化的导航和避免无人机。
translated by 谷歌翻译
我们研究了图结构识别的问题,即在时间序列之间恢复依赖图的图。我们将这些时间序列数据建模为线性随机网络动力学系统状态的组成部分。我们假设部分可观察性,其中仅观察到一个包含网络的节点子集的状态演变。我们设计了一个从观察到的时间序列计算的新功能向量,并证明这些特征是线性可分离的,即存在一个超平面,该超平面将与连接的节点成对相关的特征群体与与断开对相关的节点相关联。这使得可以训练各种分类器进行因果推理的功能。特别是,我们使用这些功能来训练卷积神经网络(CNN)。由此产生的因果推理机制优于最先进的W.R.T.样品复杂性。受过训练的CNN概括了结构上不同的网络(密集或稀疏)和噪声级别的轮廓。值得注意的是,他们在通过合成网络(随机图的实现)训练时也很好地概括了现实世界网络。最后,提出的方法始终以成对的方式重建图,也就是说,通过确定每对相应的时间序列中的每对节点中是否存在边缘或箭头或不存在箭头。这符合大规模系统的框架,在该系统中,网络中所有节点的观察或处理都令人难以置信。
translated by 谷歌翻译
当使用基于视觉的方法对被占用和空的空地之间的单个停车位进行分类时,人类专家通常需要注释位置,并标记包含目标停车场中收集的图像的训练集,以微调系统。我们建议研究三种注释类型(多边形,边界框和固定尺寸的正方形),提供停车位的不同数据表示。理由是阐明手工艺注释精度和模型性能之间的最佳权衡。我们还调查了在目标停车场微调预训练型号所需的带注释的停车位数。使用PKLOT数据集使用的实验表明,使用低精度注释(例如固定尺寸的正方形),可以将模型用少于1,000个标记的样品微调到目标停车场。
translated by 谷歌翻译
心脏听诊是用于检测和识别许多心脏病的最具成本效益的技术之一。基于Auscultation的计算机辅助决策系统可以支持他们的决定中的医生。遗憾的是,在临床试验中的应用仍然很小,因为它们中的大多数仅旨在检测音盲局部信号中的额外或异常波的存在,即,仅提供二进制地面真理变量(普通VS异常)。这主要是由于缺乏大型公共数据集,其中存在对这种异常波(例如,心脏杂音)的更详细描述。为基于听诊的医疗建议系统铺平了更有效的研究,我们的团队准备了目前最大的儿科心声数据集。从1568名患者的四个主要听诊位置收集了5282个录音,在此过程中,手动注释了215780人的心声。此外,并且首次通过专家注释器根据其定时,形状,俯仰,分级和质量来手动注释每个心脏杂音。此外,鉴定了杂音的听诊位置以及杂音更集中检测到杂音的位置位置。对于相对大量的心脏声音的这种详细描述可以为新机器学习算法铺平道路,该算法具有真实世界的应用,用于检测和分析诊断目的的杂波。
translated by 谷歌翻译
This research presents ORUGA, a method that tries to automatically optimize the readability of any text in English. The core idea behind the method is that certain factors affect the readability of a text, some of which are quantifiable (number of words, syllables, presence or absence of adverbs, and so on). The nature of these factors allows us to implement a genetic learning strategy to replace some existing words with their most suitable synonyms to facilitate optimization. In addition, this research seeks to preserve both the original text's content and form through multi-objective optimization techniques. In this way, neither the text's syntactic structure nor the semantic content of the original message is significantly distorted. An exhaustive study on a substantial number and diversity of texts confirms that our method was able to optimize the degree of readability in all cases without significantly altering their form or meaning. The source code of this approach is available at https://github.com/jorge-martinez-gil/oruga.
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Artificial Intelligence (AI) has become commonplace to solve routine everyday tasks. Because of the exponential growth in medical imaging data volume and complexity, the workload on radiologists is steadily increasing. We project that the gap between the number of imaging exams and the number of expert radiologist readers required to cover this increase will continue to expand, consequently introducing a demand for AI-based tools that improve the efficiency with which radiologists can comfortably interpret these exams. AI has been shown to improve efficiency in medical-image generation, processing, and interpretation, and a variety of such AI models have been developed across research labs worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that reflects the divide between AI research and successful AI translation. To address the barrier to clinical deployment, we have formed MONAI Consortium, an open-source community which is building standards for AI deployment in healthcare institutions, and developing tools and infrastructure to facilitate their implementation. This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium. We identify barriers between AI-model development in research labs and subsequent clinical deployment and propose solutions. Our report provides guidance on processes which take an imaging AI model from development to clinical implementation in a healthcare institution. We discuss various AI integration points in a clinical Radiology workflow. We also present a taxonomy of Radiology AI use-cases. Through this report, we intend to educate the stakeholders in healthcare and AI (AI researchers, radiologists, imaging informaticists, and regulators) about cross-disciplinary challenges and possible solutions.
translated by 谷歌翻译